Epidemiological models with parametric heterogeneity: Deterministic theory for closed populations

نویسنده

  • Artem S. Novozhilov
چکیده

We present a unified mathematical approach to epidemiological models with parametric heterogeneity, i.e., to the models that describe individuals in the population as having specific parameter (trait) values that vary from one individuals to another. This is a natural framework to model, e.g., heterogeneity in susceptibility or infectivity of individuals. We review, along with the necessary theory, the results obtained using the discussed approach. In particular, we formulate and analyze an SIR model with distributed susceptibility and infectivity, showing that the epidemiological models for closed populations are well suited to the suggested framework. A number of known results from the literature is derived, including the final epidemic size equation for an SIR model with distributed susceptibility. It is proved that the bottom up approach of the theory of heterogeneous populations with parametric heterogeneity allows to infer the population level description, which was previously used without a firm mechanistic basis; in particular, the power law transmission function is shown to be a consequence of the initial gamma distributed susceptibility and infectivity. We discuss how the general theory can be applied to the modeling goals to include the heterogeneous contact population structure and provide analysis of an SI model with heterogeneous contacts. We conclude with a number of open questions and promising directions, where the theory of heterogeneous populations can lead to important simplifications and generalizations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Markovian stochastic epidemics in extremely heterogeneous populations

A feature often observed in epidemiological networks is significant heterogeneity in degree. A popular modelling approach to this has been to consider large populations with highly heterogeneous discrete contact rates. This paper defines an individual-level non-Markovian stochastic process that converges on standard ODE models of such populations in the appropriate asymptotic limit. A generalis...

متن کامل

New method for estimation of the scale of fluctuation of geotechnical properties in natural deposits

One of the main distinctions between geomaterials and other engineering materials is the spatial variation of their properties in different directions. This characteristic of geomaterials -so called heterogeneity- is studied herewith. Several spatial distributions are introduced to describe probabilistic variation of geotechnical properties of soils. Among all, the absolute normal distribution ...

متن کامل

Inferring Epidemiological Dynamics with Bayesian Coalescent Inference: The Merits of Deterministic and Stochastic Models

Estimation of epidemiological and population parameters from molecular sequence data has become central to the understanding of infectious disease dynamics. Various models have been proposed to infer details of the dynamics that describe epidemic progression. These include inference approaches derived from Kingman's coalescent theory. Here, we use recently described coalescent theory for epidem...

متن کامل

Explaining Heterogeneity in Risk Preferences Using a Finite Mixture Model

This paper studies the effect of the space (distance) between lotteries' outcomes on risk-taking behavior and the shape of estimated utility and probability weighting functions. Previously investigated experimental data shows a significant space effect in the gain domain. As compared to low spaced lotteries, high spaced lotteries are associated with higher risk aversion for high probabilities o...

متن کامل

Individual heterogeneity and identifiability in capture–recapture models

Individual heterogeneity and identifiability in capture–recapture models.— Individual heterogeneity in detection probabilities is a far more serious problem for capture–recapture modeling than has previously been recognized. In this note, I illustrate that population size is not an identifiable parameter under the general closed population mark–recapture model Mh. The problem of identifiability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012